

Statewide Implementation of the SPG Specification for Chip Seal Binders in Service

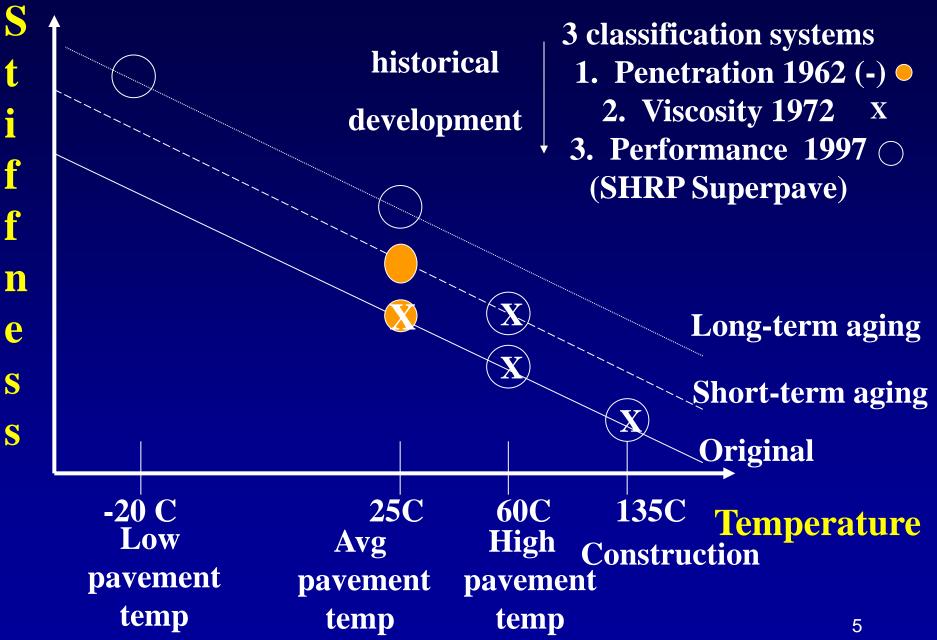
TxDOT Implementation Project 5-6616 Darren Hazlett, Jerry Peterson Amy Epps Martin, Edith Arambula Tom Freeman, Jon Epps Shi Chang, Juan Carvajal Munoz

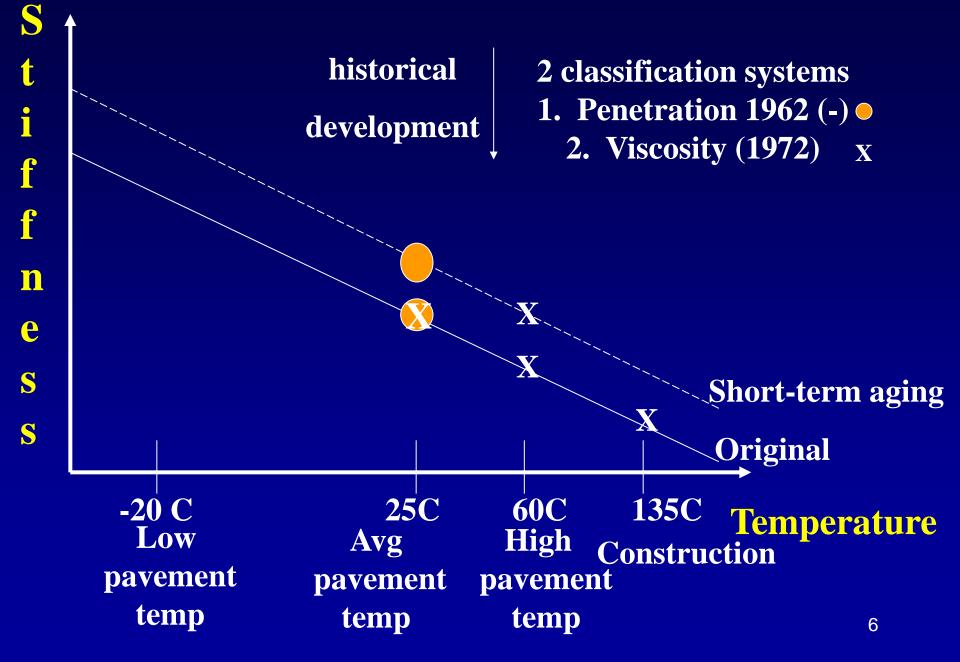
March 2015 WASHTO Subcommittee on Materials & Construction

OUTLINE

- Motivation & Objective
- Recommended SPG Specification
- Work Plan (Implementation Project Progress)
- The End of the World?

MOTIVATION & OBJECTIVE


- Increase performance and reduce cost
- Improve chip seal binder spec & selection
 - performance-related tests
 - — @ temperatures that cover entire *in service* range for specific climate
 - consider aging during critical 1st year
 - reduce variability in grades
 - possibly adjust due to traffic


Asphalt Binder Specification History

Classification of Asphalt Binders - HMA

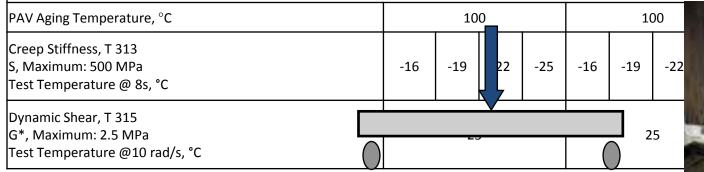
Classification of Asphalt Binders – AC Chip Seal

Classification of Asphalt Binders – Chip Seal Emulsions S historical **1** classification systems i development **1. Penetration 1962 (-)** • f f n e S S Original -20 C **25**C **60**C **135C Temperature** Low High Avg Construction pavement pavement pavement temp temp temp 7

DEVELOPMENT OF SPG

- TxDOT Research Project 0-1710 (45 field sections)
- TxDOT Research Project 0-6616 (30 field sections)
- NCHRP Research Project 14-17 (3 field sections)
- SPG spec for chip seal binders in service
 - Method B for emulsion residue recovery
 - + shear strain sweep with new threshold
 - X m-value
 - MSCR not added
- SPG specification part of system to be used with
 - -design guidelines
 - -quality control procedures
 - -construction techniques

RECOMMENDED SPG w/AASHTO Standards


with PP 72 Method B Recovery FP <u>></u> 230 by T 48 RV <u><</u> 0.15 Pa*s @ 205°C by T 316		Performance Grade SPG 67 SPG 70 SPG 73										
		-19	-22	-25	-16			-25	-16	-19	-22	-25
Average 7-day Maximum Surface Pavement Design Temperature, °C	<67			I	<70				<73			
Minimum Surface Pavement Design Temperature, °C	>-16	>-19	>-22	>-25	>-16	>-19	>-22	>-25	>-16	>-19	>-22	>-25

Original Binder

Dynamic Shear, T315 G*/Sinδ Minimum: 0.65 kPa Test Temperature @10 rad/s, °C Shear Strain Sweep, T 315 % strain @ 0.8G_i*, Minimum: 17.5 Test Temperature @10 rad/s linear loading from 1-50% strain,

1 sec delay time with 20-30 measurements, °C

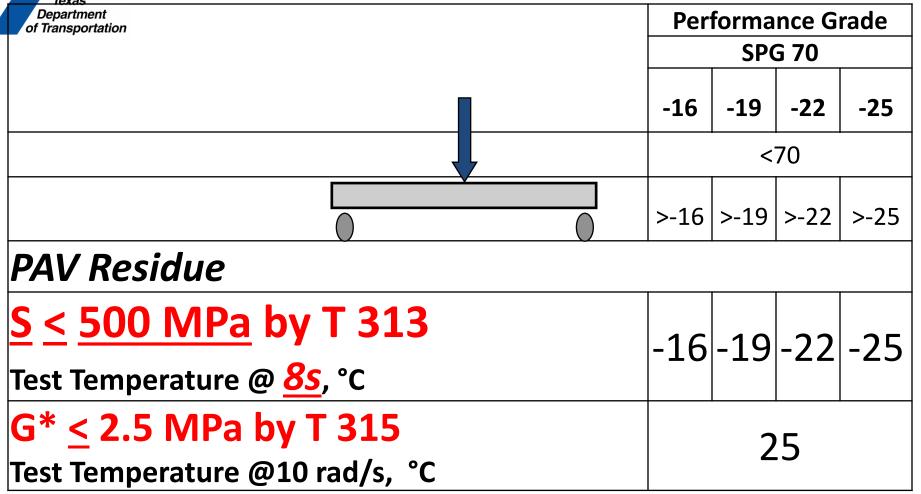
Pressure Aging Vessel (PAV) Residue (AASHTO PP1)

RECOMMENDED SPG w/AASHTO Stnds

with AASHTO PP 72 Method B Recovery	Per	Performance Grade					
FP > 230 by T 48		SPO	SPG 70				
RV <u><</u> 0.15 Pa*s @ 205°C by T 316		-19	-22	-25			
Avg 7-day Max <u>Surface</u> Pavement T, °C	<70						
Min <u>Surface</u> Pavement T, °C	>-16	>-19	>-22	>-25			

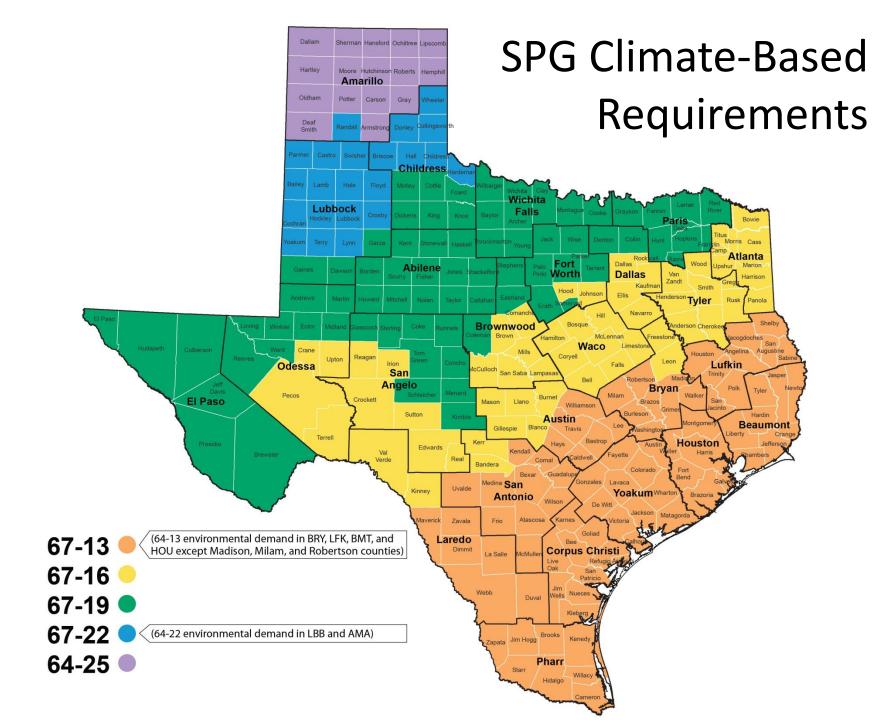
- Method B for Emulsion Residue Recovery
 - Thin Film on Silicone Mat
 - 60 $^\circ C$ for 6 hrs

RECOMMENDED SPG w/AASHTO Stnds



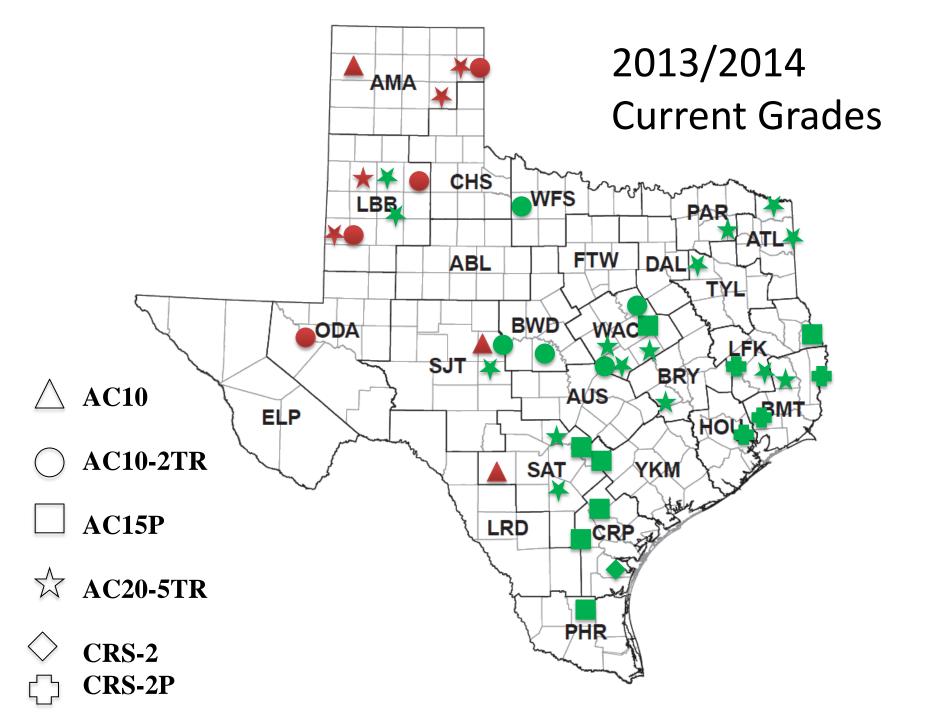
of Transportation		Performance Grade				
		SPG 70				
		-16	-19	-22	-25	
			<7	70		
		>-16	>-19	>-22	>-25	
Original Binder						
$G^*/Sin\delta \ge 0.65 \text{ kPa}$ by T 315		70				
Test Temperature @ 10rad/s, °C						
0.8G _i * <u>></u> 17.5% strain by T 315	25					
Test Temperature @ 10rad/s w/ 1-50%, °C		23				

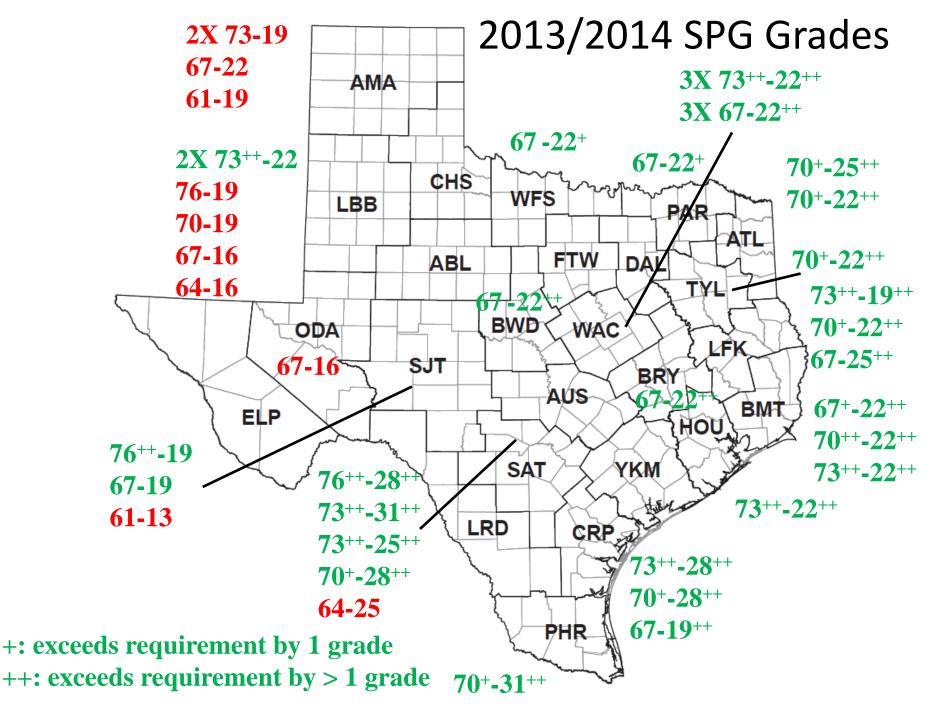
+ $\delta \leq$ 80 where G*/sin δ = 0.65 kPa for UTI \geq 89



WORK PLAN

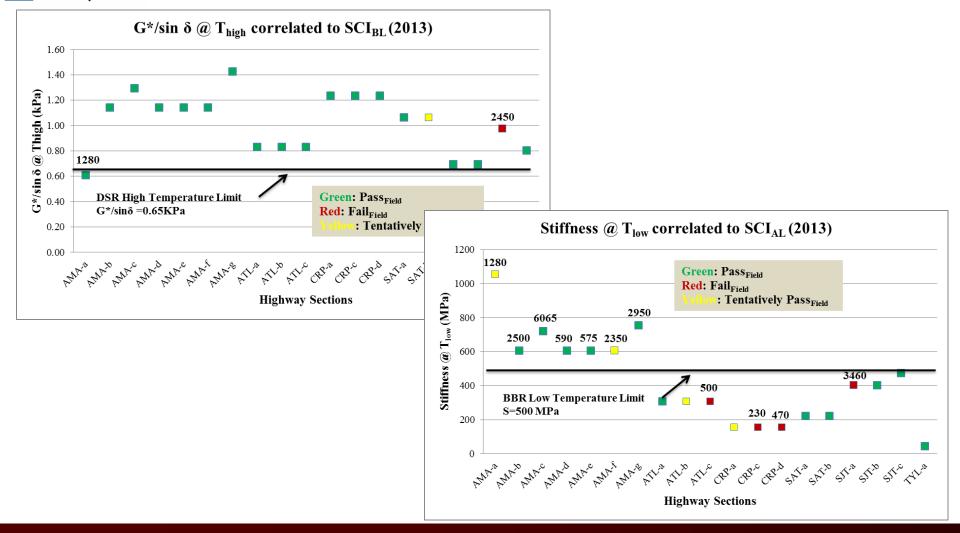
- Conduct Technical Briefings w/TxDOT & Industry
 - User-Producer Group
 - Association of General Contractors (AGC) of TX
 - Texas Asphalt Pavement Association (TxAPA)
 - Industry
 - TxDOT
- Determine SPG Requirements in TX based on climate
 - Adjust based on traffic or service level (T_{high}) or other considerations (T_{low})





WORK PLAN

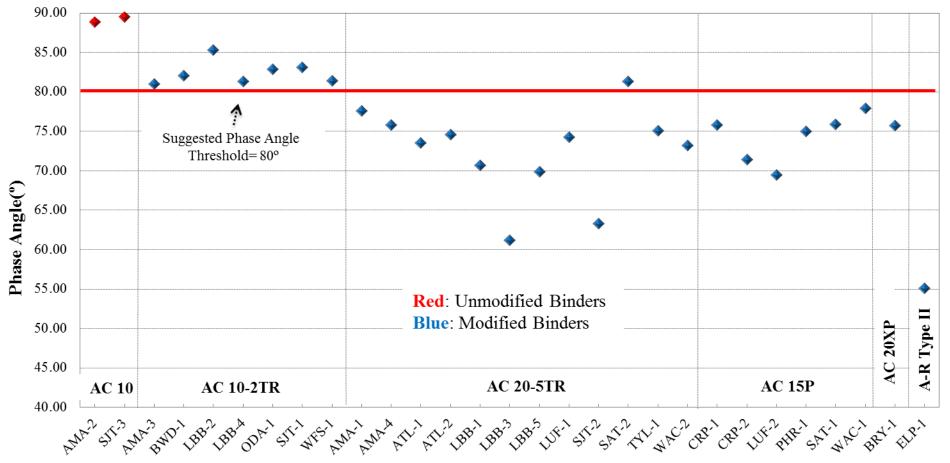
- Determine SPG Grades & Monitor Performance near construction & @ 1-year (including embedment depth)
 - 2013 29 binders & 19 sections
 - 2014 16 binders & 14 sections & Shadow Spec
 - 2015 ~20 sections in \geq 2 districts
 - 2016 ~15 sections statewide



SPG Parameters Correlated to SCI Score (2013)

Texas

Department of Transportation



δ @ Interpolated Continuous SPG Grade

Texas

Department of Transportation

Highway Sections (HS)

WORK PLAN

- Verify SPG
 - Validate that PAV simulates critical 1st year
 - Review 10 uncorrelated (lab ≠ field) 0-6616 sections
 - Validated critical 1st year field performance
- Revise SPG
 - Consider 3°C vs 6°C increments, single maximum surface temperature, & <u>traffic effects</u>
 - Further explore exclusive use of DSR w/predicted low temperature property & LAS for intermediate temperature
 - Add high temperature property & threshold to ensure modification = $\delta \leq 80 @$ continuous T_H for UTI ≥ 89
 - Verify thresholds

Curent Grade	Surface Performance Grade of Multiple Project Samples										
AC-20-5TR	67-16	70-13	70-16	70-19	73-16	73-19	76-16	79-19			
CRS-2	64-10	67-13									
CRS-2P	70-10	76-16	79-16								
AC-10	61-19	64-16	64-19								
AC-15P	70-19	73-13	73-19	73-22							

Current specifications allow a significantly wide variation in properties, enough for multiple proposed SPG grade binders. Data from Research Project and Implementation Efforts

AC-SPG Summary 2013 Samples

AC Grade	SPG
AC-10	61-13, 61-19
AC-10-2TR	64-16, 67-16, 67-19, 67-22, 70-28
AC-15P	67-25, 70-28, 70-31, 73-25
AC-20-5TR	70-22, 70-25, 73-19, 73-22, 73-25, 76-19
AC-20XP	73-19
AR	79-25

WORK PLAN

 Modify SPG based on feedback from TxDOT districts & briefings

• Document effort including estimated economic impact of implementation

How am I going to get my polymer?

- Rule of 89
 - If Temperature Spread > 89C
 - Phase Angle (δ) < 80 ^o

(at the temperature where $G^*/\sin \delta = 0.65$)

How would I call for a material using the Spec?

Possible SPG Grades

- SPG 73-25
- SPG 70-19
- SPG 67-16
- SPG 64-25

- CRS-2(SPG 73-25)
- CRS-2(SPG 70-19)
- HFRS-2(SPG 67-16)
- CHFRS-2(SPG 64-25)

Like the REM song says, is it:

"The End of the World as We Know It?"

NO!

- Select Binders based on Climate
- Modify Climate Grade based on traffic or other considerations
- Can select hot applied or emulsion (both would have to meet the same binder or emulsion residue properties)

- Every material will meet some grade.
- SPG is a tighter spec and we will get less variability.
- Current higher performing binders will still be higher performing binders – we will have a way to say they are higher performing.
- Current Tier Table is replaced by a better system based on performance.

• Remember the rest of that REM verse:

It's the End of the World As We Know It, AND I FEEL FINE.

THANK YOU

BACKUP

SPG Binder Specification 2004---300-054 2014---300-001

Table 17ASurface Performance Grade (SPG) Specification

	SPG 64 SPG 67							SPG 70				SPG 73					
Surface Performance Grade	-25	-13	-16	-19	-22	-25	-13	-16	-19	-22	-25	-13	-16	-19	-22	-25	
Average 7-day Max pavement surface design temperature ¹ , °C	<64	<67						<70					<73				
Min pavement surface design temperature ¹ , °C	>-25	>-13	>-16	>-19	>-22	>-25	>-13	>-16	>-19	>-22	>-25	>-13	>-16	>-19	>-22	>-25	
	_				Ori	ginal Bir	nder										
Flash point temp, T 48, Min, °C								230)								
Viscosity, T 316: Max 0.15 Pa*s, test temp., °C								205	5								
				Orig	ginal Per	formand	e Prope	erties									
Dynamic Shear, T 315: G*/sind, Min 0.65 kPa, Test temp @ 10 rad/s, °C	64	64 67 70					73										
Shear Strain Sweep, T 315: % strain @ 0.8 G ₁ *, Min: 17.5 MPa Test temp. @ 10 rad/s linear loading from 1–50% strain, 1 sec. delay time with measurement of 20–30 increments, °C	25	25 25					25										
Phase angle ³ (d), Max, @ temp. where G*/sind = 0.65 kPa	80	-	-	_	80	80	-	-	80	80	80	-	80	80	80	80	
			Р	ressure	Aging V	essel (PA	V) Resi	due (R 2	.8)								
PAV aging temperature, °C	100			100					100					100			
Creep stiffness, T 313: S, Max 500 MPa, Test temp. @ 8 sec., °C	-25	-13	-16	-19	-22	-25	-13	-16	-19	-22	-25	-13	-16	-19	-22	-25	
Shear Strain Sweep, T 315 G _i *, Max: 2.5 MPa Test temp. @ 10 rad/s linear loading at 1% strain, 1 sec. delay time, °C	25		25 25				25										
 Temperatures are at the surface of the temperatures. Surface-grade high temp The referee method will be AASHTO T 3 Phase angle is determined at the temp where G*/sind = 0.65 kPa. 	peratures are ge 316 using a #21	enerally 3°C spindle at 5	to 4°C gre 0 r/min, h	ater than ti owever alte	hose detern ernate meth	nined for Su ods may be	perpave Po used for r	G binders. outine test	ing and qua	lity assuranc	e.					1	

Table 7ASurface Performance-Grade Emulsified Asphalt

Crada	Test	HFRS-2(SPG xy ¹)		CRS-2(SPG xy)		CHFRS-2(SPG xy)		
Grade	Procedure	Min	Max	Min	Max	Min	Max	
Tests on emulsions:								
Viscosity, Saybolt Furol at 50°C, SFs ²	T 72	150	400	150	400	150	400	
Storage stability test, 24 h., % ²	T 59		1		1		1	
Demulsibility, 35 mL, 0.02 N CaCl ₂ , %	T 59	60						
Demulsibility, 35 mL, 0.8% dioctyl sodium sulfosuccinate, %	T 59			60		60		
Particle charge test	T 59			pos	positive po		ositive	
Sieve test, % ²	T 59		0.10		0.10		0.10	
Residue recovery	PP 72,							
Residue, %	Procedure B	65		65		65		
Tests on recovered residue:			·					
Residue properties		Meet the specified SPG in Table 17A ³						
Solubility in trichloroethylene, %	T 44	97.5		97.5				
Float test, 60°C, sec.⁴	Т 50	1,200				1,200		

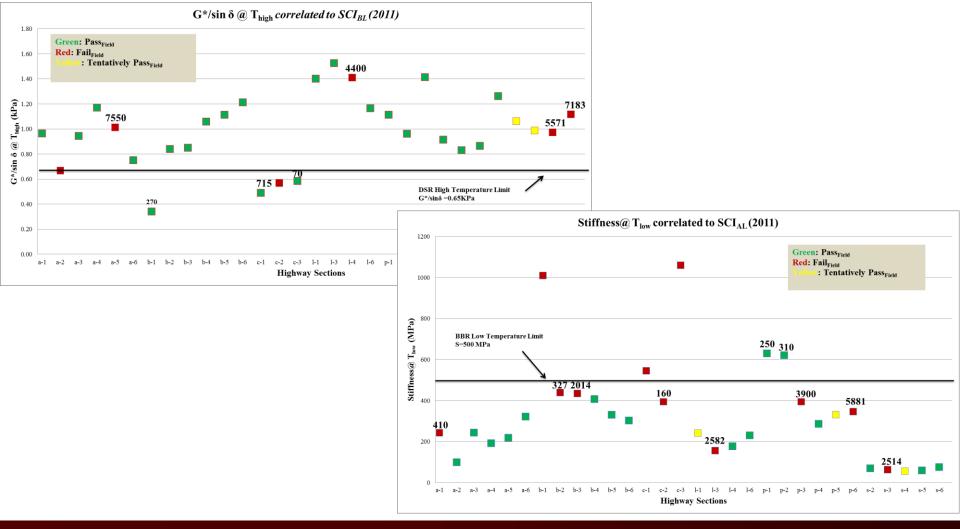
2. This test requirement on representative samples is waived if successful application of the material has been achieved in the field.

Meet original performance properties and PAV residue requirements only

If Float test is less than 1,200 sec. using PP 72, Procedure B, for residue recovery, then use T 59 for residue recovery.

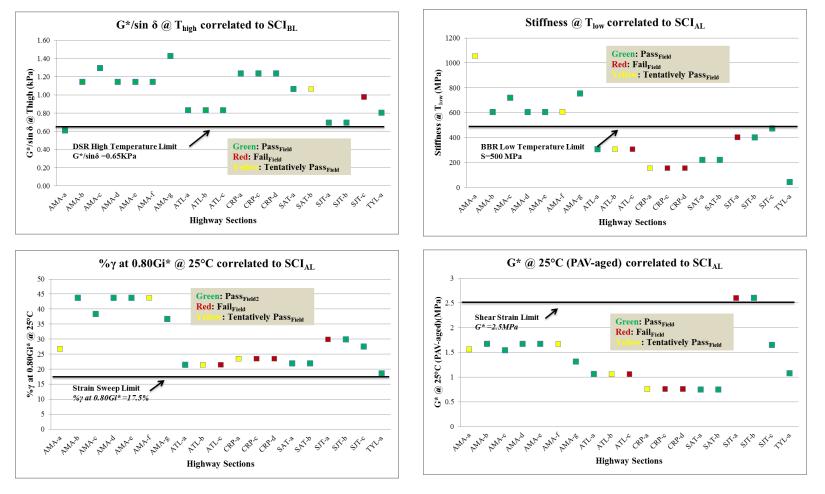
TxDOT 0-6747

• WFS 2012

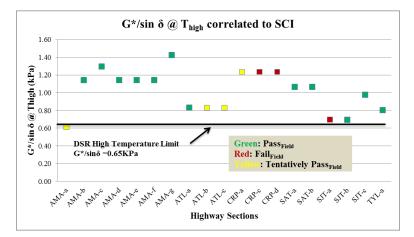

• SPG 67-19 required by climate

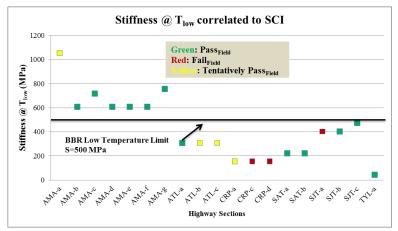
•	δ @ T _{high} ~90
	for AC10s

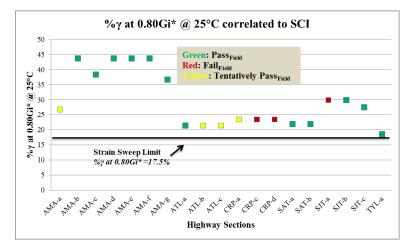
Binder	Field Performance	SPG High Temperature Grade	AADT
AC10	Good	64	270
AC10	Bleeding	64	460
AC10	Bleeding	64	690
AC10-2TR	Good	64	840
AC10-2TR	Bleeding	64	1350
AC10-2TR	Bleeding	64	2300
AC10-2TR	Bleeding	64	3300

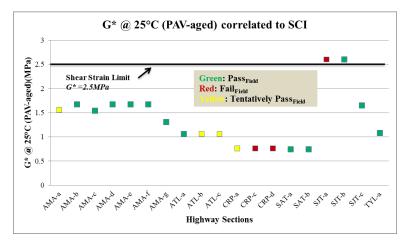


SPG Parameters Correlated to SCI Score (2011)

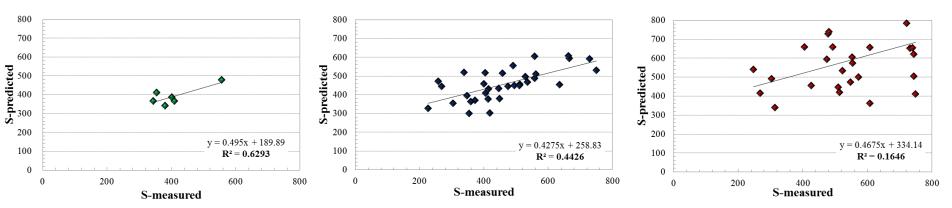



SPG Parameters Correlated to SCI Score (2013)





SPG Parameters Correlated to SCI Score



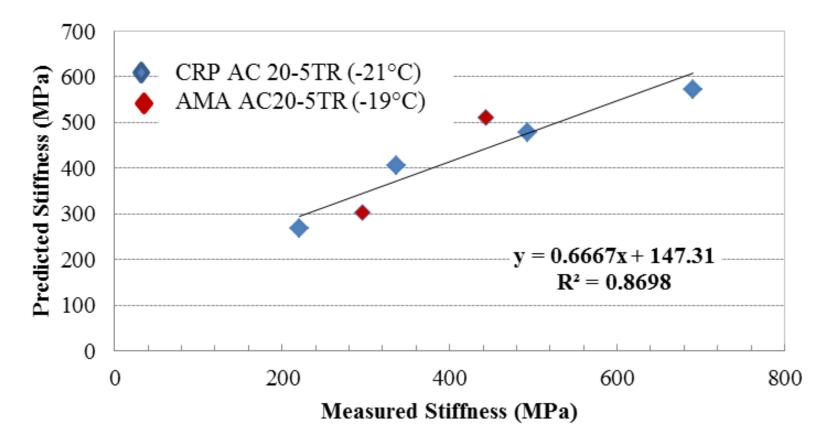
Exclusive Use of DSR - Prediction of BBR Stiffness

stiffness comparison @ 8s loading time

stiffness comparison @ -13°C and -16°C stiffness comparison @ -19°C and -22°C stiffness comparison @ -25°C and -28°C

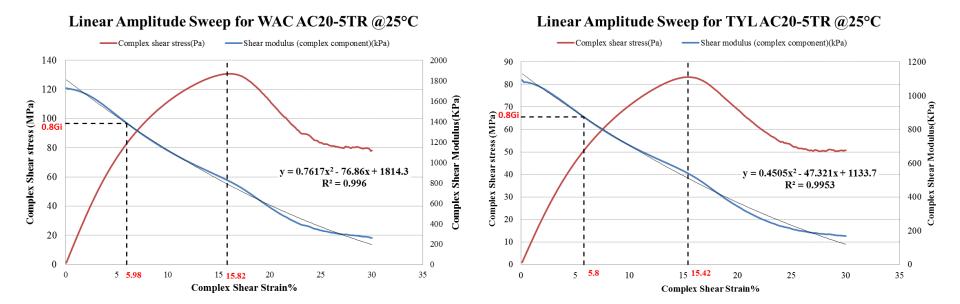
4-mm DSR

RESULTS


AMA AC20-5TR(73-19)	DDD magging d giffnagg(Mng)	SHRP Back-calculation	
	DDK-measureu sumiess(wipa)	-19°C	-9°C
-19°C	303	296	148
-22°C	511	443	240

CRP AC20-5TR(70-31)	BBR-measured stiffness(Mpa)	SHRP Back-calculation		
		-31°C	-21°C	-11°C
-25°C	268	38	221	111
-28°C	405	64	337	166
-31°C	478	106	494	243
-34°C	573	173	691	348

4-mm DSR


Predicted vs. Measured Stiffness (MPa)-4mm DSR

LAS Test Results

	Shear Strain Sweep	Linear Amplitude Sweep	
	%strain@0.8G _i	%strain@peak stress	%strain@0.8G _i
WAC AC20-5TR	18.44	15.82	5.98
TYL AC20-5TR	18.58	15.42	5.8

MOTIVATION & OBJECTIVE

- Need to improve seal coat binder specs
 - replace empirical tests (penetration, ductility) with performance-related tests applicable to both unmodified and modified binders
 - consider temperatures that cover entire *in service* range that are tied to specific climate
 - consider aging during critical 1st year
 - reduce variability in grades
- Developed Surface Performance-Grade (SPG) spec for seal coat binders *in service*
- Validated with 75 TX highway sections

TxDOT 0-1710 (3.5 yr+ project, 9/99 – 3/03) Superpave Binder Tests for Surface Treatment Binders

- Traditional Specification for Surface Treatment Binder RESIDUE Inadequate
- •Develop Performance-Based Specification & Grade Selection Process for Surface Treatment Binder RESIDUE
 - Surface Treatment Distresses & Conditions
 - Superpave Equipment
 - •Qualitative Performance Rankings & Corresponding Environmental Conditions
- Validate Specification
 - Laboratory Measured Binder SPG Grade
 - Observed Field Performance on 45 Highway Sections

NCHRP 14-17 (2.5 yr+ project @ A&M, 4/08 – 12/09) Manual for Emulsion-Based Chip Seals for Pavement Preservation

Provide technology-based <u>tools</u> that promote sound engineering decisions and reduce the subjectivity in chip seal design and construction processes
Create a <u>manual</u> which describes how to design and construct chip seals with a very high confidence level in the success of the

•A&M: Emulsion residue recovery chemical & rhe

•A&M: Emulsion residue recovery, chemical & rheological binder characterization for 5 emulsions + 3 Highway Sections

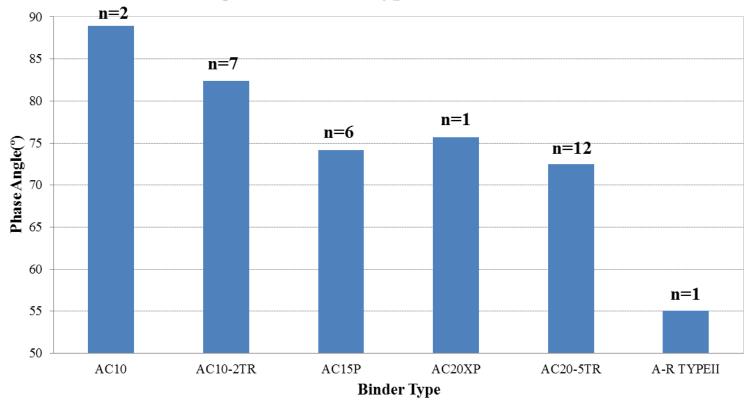
TxDOT 0-6616 (2 year project, 9/10-8/12) Validate Surface Performance-Graded (SPG) Specification for Surface Treatment Binders

Improve SPG Specification

- •Standardize Emulsion Residue Recovery Method
- •Explore Exclusive Use of DSR Predict S, m-value
- •Evaluate Additional Performance Parameters
- •Further Field Validate SPG Thresholds on 30 Highway Sections

Emulsion Task Force (ETF) of FHWA Pavement Preservation ETG (formed 08, ~30 members, 2 X per year)

- •Review Ongoing Research & Integrate Work
- •Recommend / Propose / Evaluate Research Needs
- Advance Development of Performance-Based Methods &
 Specifications
- •Facilitate Implementation / Adoption of Standards through AASHTO/ASTM
- •Share Info w/Other ETGs


Presentations & Publications

Presentations	Publications
ASTM Subcommittee D04.41 – 2001	TRR – 2002, 2004, 2010, 2013
Transportation Short Course – 2002, 2012, 2013, 2014	NCHRP 680 – 2011
TxAPA – 2013, 2014	TTI Reports – 2001, 2005, 2013
TRB – 2002, 2004, 2010, 2013, 2013	Journal of Applied Asphalt Binder Technology – 2002
3 rd Symposium on Binder Rheology & Pavement Performance - 2002	TRR Catalog of Practical Papers - 2002
Transportation Systems Workshop - 2012	
FHWA Pavement Preservation ETG Emulsion Task Force – 2009, 2009, 2010, 2013, 2014	

δ @ interpolated continuous SPG grade

Average Phase Angle @ interpolated continuous SPG grade for each type of binders

