INTELLIGENT COMPACTION

More Science Than Art

Jimmy Si, Ph.D., P.E.
Richard Williammee, P.E.
San Antonio, TX, Mar. 23, 2015
<table>
<thead>
<tr>
<th></th>
<th>Why use IC?</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>What is it?</td>
<td>4-6</td>
</tr>
<tr>
<td>3</td>
<td>What information does IC provide?</td>
<td>7-8</td>
</tr>
<tr>
<td>4</td>
<td>How to use the IC information?</td>
<td>9-10</td>
</tr>
<tr>
<td>5</td>
<td>TxDOT IC projects</td>
<td>11-23</td>
</tr>
<tr>
<td>6</td>
<td>IC benefits and challenges</td>
<td>24-25</td>
</tr>
<tr>
<td>7</td>
<td>IC resources</td>
<td>26</td>
</tr>
</tbody>
</table>
Why use IC?

- Good pavement requires a uniform foundation to build on
- Current compaction methods do not meet the needs

Fatigue life increases 70% on average with uniform support
What is it?

- A vibratory roller with a stiffness measurement system that records the material’s stiffness in real time
- A GPS system that tracks the roller’s position and pass counts in real time
- An in-cab display panel showing a color-coded map of stiffness, roller’s position, and pass counts in real time
What is it? - IC Rollers and Measurements

Caterpillar: CMV, MDP

Dynapac: CMV

Bomag: E_{VIB} (MN/m²)

Sakai: CCV

Case/Ammann: k_b (MN/m)

Hamm: HMV
What is it? - TxDOT IC Retrofit Kit

- Accelerometer
- Receiver
- IC Retrofit Kit
- Display Panel
- Accelerometer
- IC Retrofit Kit
What information does IC provide?

- Stiffness
- Pass Counts
IC provides stiffness and pass counts in two separate data files:

- **All Passes Data**: IC data (stiffness and pass counts) for all passes for a given area
- **Final Coverage Data**: IC data (stiffness and pass counts) only for the last pass for a given area
How to use the IC information?

- **ICMV (IC Measurement Values)**
 - A whole set of IC data collected in a given area
 - ICMV is assumed in normal distribution

- **ICTV (IC Target Value)**
 - The average of ICMV
 - Color codes are based on ICTV
How to use the IC information?

In-situ point tests such as NDG and DCP are performed based on the color-coded maps.
TxDOT IC Projects

Amarillo (1)
LP335

Waco (2)
SH95
FM2311

El Paso (1)
FM1281

Brownwood (3)
FM2214;
SH6;
SH206

Fort Worth (12)
FM156; DFW Connector; US287; FM1938;
FM730; SH267; IH35W; and IH30; FM2264;
FM1189; FM19838 (extension); US281

Paris (2)
SH24
US75

Atlanta (1)
FM450

Beaumont (1)
US90

Austin (1)
FM1460

Houston (1)
SH35
TXDOT Fort Worth District IC Projects

- **FM156 (FHWA Demonstration Project)**
 - FHWA/Pooled-fund study IC demonstration
- **FM1938 (Highway for Life Project)**
 - TxDOT retrofit kit implementation
- **DFW Connector Design-Build Project**
- **US 287 in Mansfield**
- **FM 731 at Lake Weatherford**
- **US 67 Bypass north of Cleburne**
- **IH 35W in North Fort Worth**
- **SH 267 Bypass around Dublin**
- FM 156 (North Fort Worth at Alliance Airport)
- FHWA/TPF IC Study
- Cohesive subgrade, Lime treated subgrade, and Aggregate Base (Flex Base)

Intelligent Compaction

- *padfoot drum IC roller*
- *smooth drum IC roller*

- Dynapac Single Smooth drum IC roller
Intelligent Compaction

K_s shows compaction progress and a soft area

Case/Ammann
Single-drum padfoot IC roller
Detect Underground Structures

Box Culvert

Point 1:
- CBR (%)
- Depth (mm)
- \(E_{LWD-Z2} = 61.1 \text{ MPa} \)
- \(E_{V1} = 42.1 \text{ MPa} \)
- \(E_{V2} = 121.1 \text{ MPa} \)
- \(E_{FWD-D3} = 57 \text{ MPa} \)
- \(E_{D-SPA} = 44 \text{ MPa} \)

Point 12:
- CBR (%)
- Depth (mm)
- \(E_{LWD-Z2} = 47.5 \text{ MPa} \)
- \(E_{V1} = 42.1 \text{ MPa} \)
- \(E_{V2} = 121.1 \text{ MPa} \)
- \(E_{FWD-D3} = 57 \text{ MPa} \)
- \(E_{D-SPA} = 44 \text{ MPa} \)

Point 13:
- CBR (%)
- Depth (mm)
- \(E_{LWD-Z2} = 47.5 \text{ MPa} \)
- \(E_{V1} = 42.1 \text{ MPa} \)
- \(E_{V2} = 121.1 \text{ MPa} \)
- \(E_{FWD-D3} = 57 \text{ MPa} \)
- \(E_{D-SPA} = 44 \text{ MPa} \)

Point 5:
- CBR (%)
- Depth (mm)
- \(E_{LWD-Z2} = 58.4 \text{ MPa} \)
- \(E_{V1} = 96.9 \text{ MPa} \)
- \(E_{V2} = 381.1 \text{ MPa} \)
- \(E_{FWD-D3} = 145 \text{ MPa} \)
- \(E_{D-SPA} = 88 \text{ MPa} \)

Point 12:
- CBR (%)
- Depth (mm)
- \(E_{LWD-Z2} = 58.4 \text{ MPa} \)
- \(E_{V1} = 96.9 \text{ MPa} \)
- \(E_{V2} = 381.1 \text{ MPa} \)
- \(E_{FWD-D3} = 145 \text{ MPa} \)
- \(E_{D-SPA} = 88 \text{ MPa} \)

\(w = 29.5\% \)
\(\gamma_d = 13.8 \text{ kN/m}^3 \)
\(E_{LWD-Z2} = 11.6 \text{ MPa} \)
Differentiate Different Materials

CMV Map $a = 1.2 \text{ mm}, f = 30 \text{ Hz}, v = 3.5 \text{ km/h}$

CMV Map $a = 1.9 \text{ mm}, f = 30 \text{ Hz}, v = 3.5 \text{ km/h}$

Flex Base

Lime Treated Subgrade

Flex Base

Dynapac
Single
Smooth drum
IC roller

Lime Stabilized Subgrade

Flex Base
Intelligent Compaction

- Project Length: 2.205 Miles
 Estimated Cost: $16.5M
 Estimated Duration: 367 Working Days

- Provides a more complete picture of the area being worked
- Less labor required
- Less time required due to testing
Intelligent Compaction

DFW Connector Design-Build Project

- $1.1 billion CDA Design-Build project
- Groundbreaking Feb. 17, 2010
- Expected completion 2014; complete 2013
- Approximately half the construction time needed for traditional contracts
Dallas/Fort Worth Connector

Courtesy Dr. David White Iowa State University

Compaq Report

Data Model: DWF Connector
Display: CCV
Site: Texas DFW Connector
Date: Friday, July 23, 2010

Compaction Analysis

- > 150.0
- 125.0
- 100.0
- 75.0
- 50.0
- 25.0
- 0.0
- Occupied

Filter Settings
Filter: <Not Specified>
Time Start: 12/12/1001 - 07:00:00 am
Time End: 12/12/1001 - 12:00:00 pm

July 2010

Courtesy Mark Morrow NorthGate Constructors
Intelligent Compaction

DFW Connector Project

Compaction Target Value (CTV) = 42

<table>
<thead>
<tr>
<th>% Target</th>
<th>CCV</th>
<th>IC Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>>130%</td>
<td>55</td>
<td>26%</td>
</tr>
<tr>
<td>90-130%</td>
<td>38-55</td>
<td>68%</td>
</tr>
<tr>
<td>80-90%</td>
<td>34-38</td>
<td>4%</td>
</tr>
<tr>
<td>70-80%</td>
<td>29-34</td>
<td>1%</td>
</tr>
<tr>
<td><70%</td>
<td><20</td>
<td></td>
</tr>
</tbody>
</table>

Current TxDOT QA Criteria:

>90% of IC Data should be equal to or greater than the CTV
- US 287 (Mansfield TX)
- New frontage roads and bridges
- Lime treated subgrade
- Testing of 4 separate locations with DCP, DSPA, IC, and NDG
- FM 730 (over Lake Weatherford headwaters)
- New bridge on roadway realignment
- Wet to inundated natural ground, 5’ rockfill embankment, low PI soil embankment, lime treated subgrade, and flex base
- US 67 (widen to 4 lane divided section)
- SH 267 (construction of a new 4 lane divided bypass)
- IH 35W (Reconstruction of a freeway section)
- Natural field crushed rock, lime treated subgrade, and flex base
IC benefits

- Provides uniformity information
 - Covers 100% of the compacted area
 - Tracks roller’s position and pass counts
- Identifies areas of poor compaction
- Selects areas to test for QC/QA
- Eliminates guesswork and reduces risk of rework
- Optimizes efficiency, maximizes productivity and minimizes costs
- Improves safety in construction zones
IC Challenges

- Executive leadership and champions
- Extensive training for both DOT’s staff and contractors
- GPS system setup
- Data management including data collection, conversion, and analysis
Questions?

Jimmy Si, Ph.D., P.E. 512-506-5901 Jimmy.Si@txdot.gov
Richard Williammee, P.E. 817-370-6675 Richard.Williammee@txdot.gov