



## TXDOT HIGH PERFORMANCE THIN OVERLAYS

Western Association of State Highways and Transportation Officials (WASHTO) – Materials and Construction Subcommittee San Antonio, Texas March 23, 2015



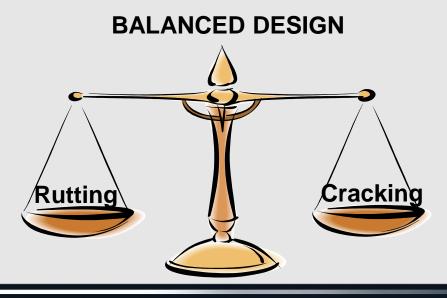
| 1 Genesis of Thin Overlays                                        | 3 -12  |
|-------------------------------------------------------------------|--------|
| 2 Austin District Guidelines for the Use of Thin Overlay Mixtures | 13-29  |
| 3 Long-Term Performance Data                                      | 30- 37 |
| 4 New Mixtures & Applications                                     | 38-45  |
| 5 Questions                                                       | 47     |

- Problem: Deficient performance life from conventional PM overlays
- Standard District Overlay Default: 2" D-GR TY C
  - Can't afford premature failures and high long-term maintenance costs with limited future funding
- Re-examined our standard non-structural overlay practices for pavement preservation purposes

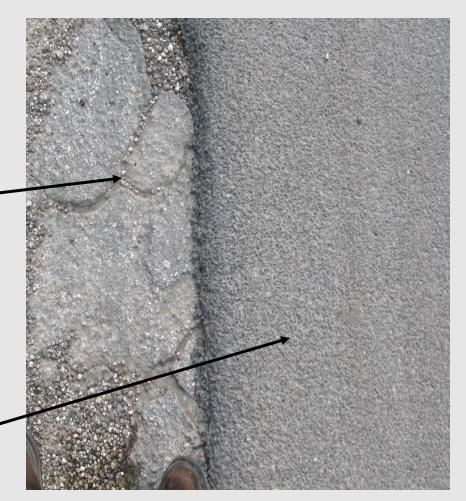
- Dense Graded Overlay Issues:
  - Issues with raveling and failures due to segregation and low AC
  - Fatigue & Top Down Cracking
    - Due to premature aging and/or low AC
- HMA/Base Modulus Ratios > 10:1
  - Overly stiff mixtures due to recycled asphalt materials
  - Building in fatigue cracking to our pavement structures (16 to 20:1)



- Goal: Develop a new strategy for PM overlays in the Austin District
  - Objective #1: Equal or better performance than current standard pavement preservation practices
    - Resist to rutting and cracking
    - Restore and improve ride
    - Restore and improve skid resistance


- Objective #2: Less susceptible to premature distress
  - Less susceptible to segregation
    & premature aging
- Objective #3: More costeffective
  - Need to maximize every dollar
  - Cannot afford short service life

- Austin District Thin Overlay Pilot Program (2007):
  - Locally available high quality aggregate with finer gradations
  - 70% Grade 5 Sandstone
  - 30% Screenings
  - PG 76-22
  - 1" Thin Overlay Mixture






- First Mix Design:
  - Density = 97.5%
  - -AC = 6.7%
  - Hamburg = 20,000 passes @ 5.3 mm rut depth
  - Indirect Tensile = 123 psi.
  - Overlay Test = 453 cycles

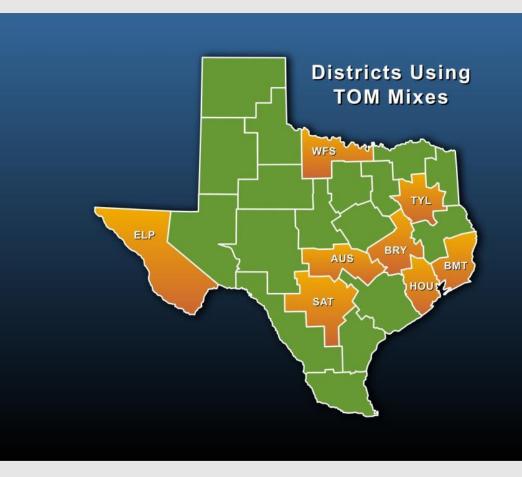


- Pavement Condition
  - Severely fatigue and block cracked
  - Multiple failures
  - Crack widths  $\leq 3/4$ "–
- Construction: May 2007
  - No repair to failures or fatigue areas
  - Heavy emulsion tack coat
  - Overlay directly on existing pavement

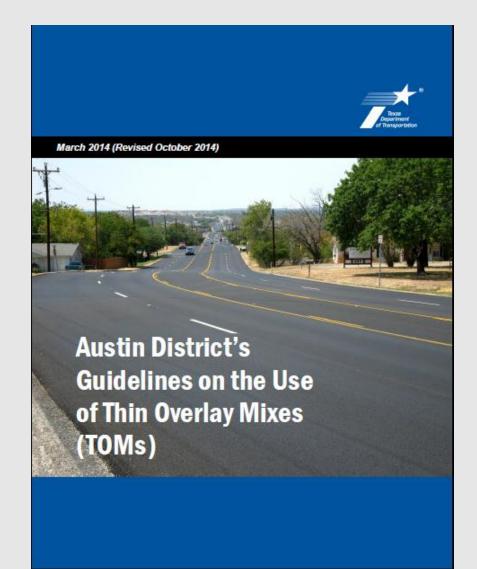


### **Genesis of Thin Overlays**




- Truck Loading (May 2007 to August 2011)
  - Practically 100% Heavy Trucks (Haul trucks & Transports)
  - >4.5 million total tonnage (material and trucks) shipped in and out since overlay
  - No distress to date

- ADT = 44,000
- High distressed
- Skid Number = mid 40's
- Improved Ride 35% improvement
- Five years until first crack seal
- Added Bonus: Quiet Ride Properties
  - Avg.= 94-98 dBA
  - PFC ~ 98 dBA




- Evaluated Thin Overlay Pilot Program:
  - Objective #1: Equal or better performance than current standard pavement preservation practices
    - Improved Ride Quality (25-35% Improvement)
    - High Skid Resistance (mid 40s to mid 50s)
    - Noise Reduction (~98 dBA)
  - Objective #2: Less susceptible to premature distress
    - High AC; High Quality Aggregate
    - Balance Design
  - Objective #3: More cost effective: YES!!!
    - TOMs = \$5.50 per SY
    - TY C = \$7.20 per SY
- Full Implementation in FY 2008

- Austin District:
  - 77 TOM projects
  - 413,000 tons or 1066 lane miles
- 10 Other Districts:
  - 25 projects
  - 177,000 tons or 476 lane miles



### Austin District Guidelines on the Use of TOMs




- Pavement Selection
  Considerations
- Mix Design & Material Properties
- Keys to Successful Construction

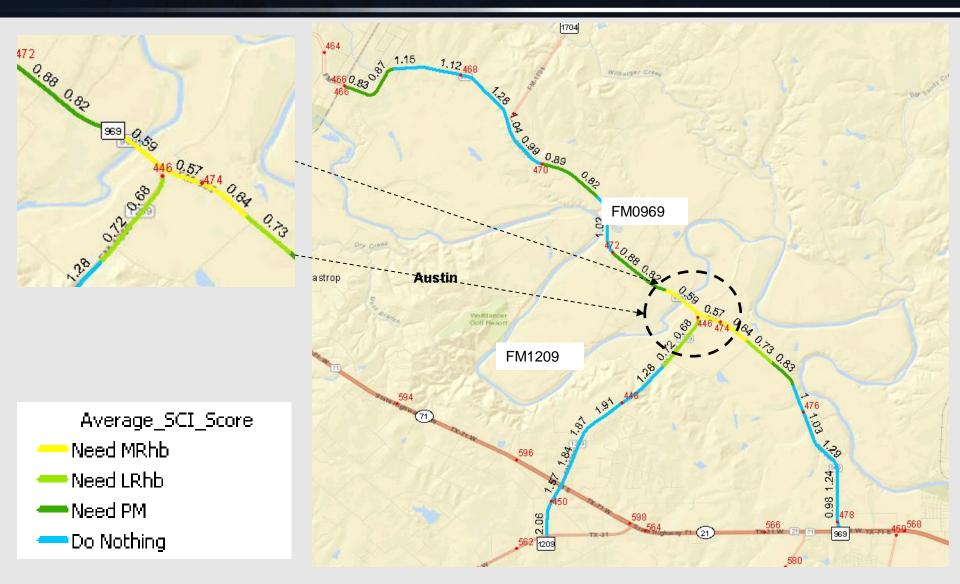
- Where can I use Thin Overlay Mixtures (TOMs)?
- Answer: Thin overlays should used on pavements:
  - <u>Structurally sound</u> Pavements needing extensive rehabilitation or requiring structural improvement should be avoided.
    - FPS 21 pavement design analysis predicts an overlay of 2" or less
  - Pavement Preservation Only requiring restoration of the surface wearing course properties, such as skid resistance, elimination of surface distresses, improve ride quality, reduce noise.



- Pavement Evaluation Need to do your homework!
- Network Level Structural Evaluation
  - <u>Ground Penetrating Radar (GPR)</u>: Determine existing pavement thickness, including HMA and base course thickness



- Pavement Evaluation Need to do your homework!
- Network Level Structural Evaluation
  - <u>Falling Weight Deflectometer (FWD)</u>: Pavement response to determine overall pavement capacity and subgrade support




- Structural Condition Index (SCI)
- SCI is the ratio of existing structural capacity and required structural capacity for 20 year ESAL

$$SCI = SN_{eff} / SN_{req}$$

- $SN_{eff} = f(total thickness, FWD deflections)$  $SN_{req} = f(20-year ESALs, subgrade Mr)$
- Thin Overlay option for SCI > 70
- Spot repair and Level-up for SCI = 70 80

| SCI Scores<br>(SCI*100) | M&R Category |
|-------------------------|--------------|
| 90–100                  | Do Nothing   |
| 80–89                   | PM           |
| 65–79                   | LRhb         |
| 50-64                   | MRhb         |
| 0–49                    | HRhb         |



Footer Text

- Pavement Overlay Design Process
  - Perform Overlay Design in FPS 21
  - Use pavement section from GPR data
  - Use subgrade support data from FWD data

TOMs okay if FPS 21 pavement design analysis predicts an overlay of 2" or less

| roblem 001<br>ontrol 1200          | District<br>County | <br>Austin<br>VILLIAMSON | Section<br>Job | 04<br>011 | Highway<br>Date | FM 1466<br>9/15/2014 | Confidence Level:<br>No. of Best Designs | 2        |                  |
|------------------------------------|--------------------|--------------------------|----------------|-----------|-----------------|----------------------|------------------------------------------|----------|------------------|
| esign Type <mark>Overlay De</mark> | sign               |                          |                |           |                 |                      |                                          |          |                  |
| Best Design No.                    | Design: 1          | Design: 2                |                |           |                 |                      |                                          |          |                  |
| Material Arrangement               | ABC                | ABC                      | /              |           |                 |                      |                                          |          |                  |
| Total Cost                         | 3.78               | 6.85                     |                |           |                 |                      |                                          |          |                  |
| No. of Layers                      | 3                  | 3                        |                |           |                 |                      |                                          |          |                  |
| Layer Depths (inches)              | 0.0<br>2.0<br>10.0 | 2.0<br>2.0<br>10.0       |                |           |                 |                      |                                          |          | Previous Page    |
|                                    |                    |                          |                |           |                 |                      |                                          |          | ivext mage       |
|                                    |                    |                          |                |           |                 |                      |                                          |          | Re-Run FPS       |
| No. of Perf. Periods               | 2                  | 1                        |                |           |                 |                      |                                          |          | 1                |
| Perf. Time (years)                 | 13, 30             | 21                       |                |           |                 |                      |                                          |          | Material Table   |
| Overlay Policy (inches)            | 2.5                |                          |                |           |                 |                      |                                          |          | Print /Save File |
|                                    |                    |                          |                |           |                 |                      |                                          |          | Detail Cost      |
| [                                  | Check Desig        | Check Design             | Chao           | k Design  | Check De        | anian I              | Check Design Chec                        | k Design | TO Main Menu     |

- Material Properties
  - High Quality Aggregates
  - Polymer Modified Asphalt
    - PG 70-22 or 76-22
    - Typical Target AC TOM-C = 6.2 6.8%
    - Typical Target AC TOM-F = 6.8 7.4%
  - No Recycled Asphalt = No RAP or RAS



| Property                                      | Test Method        | Requirement       |  |  |  |
|-----------------------------------------------|--------------------|-------------------|--|--|--|
| Coarse Aggregate                              |                    |                   |  |  |  |
| SAC                                           | Tex-499-A (AQMP)   | A <sup>1</sup>    |  |  |  |
| Deleterious material, %, Max                  | Tex-217-F, Part I  | 1.5               |  |  |  |
| Decantation, %, Max                           | Tex-217-F, Part II | 1.5               |  |  |  |
| Micro-Deval abrasion, %                       | Tex-461-A          | Note <sup>2</sup> |  |  |  |
| Los Angeles abrasion, %, Max                  | Tex-410-A          | 30                |  |  |  |
| Magnesium sulfate soundness, 5 cycles, %, Max | Tex-411-A          | 20                |  |  |  |
| Crushed face count <sup>3</sup> , %, Min      | Tex 460-A, Part I  | 95                |  |  |  |
| Flat and elongated particles @ 5:1, %, Max    | Tex-280-F          | 10                |  |  |  |
| Fine Aggregate                                |                    |                   |  |  |  |
| Linear shrinkage, %, Max                      | Tex-107-E          | 3                 |  |  |  |
| Combined Aggregate <sup>4</sup>               |                    |                   |  |  |  |
| Sand equivalent, %, Min Tex-203-F 45          |                    |                   |  |  |  |

#### **Aggregate Quality Requirements**

- 1. Surface aggregate classification of "A" is required unless otherwise shown on plans.
- 2. Used to estimate the magnesium sulfate soundness loss in accordance with Section 347.2.1.1.2., "Micro-Deval Abrasion."
- 3. Only applies to crushed gravel.
- 4. Aggregates, without mineral filler, or additives, combined as used in the job-mix formula (JMF).

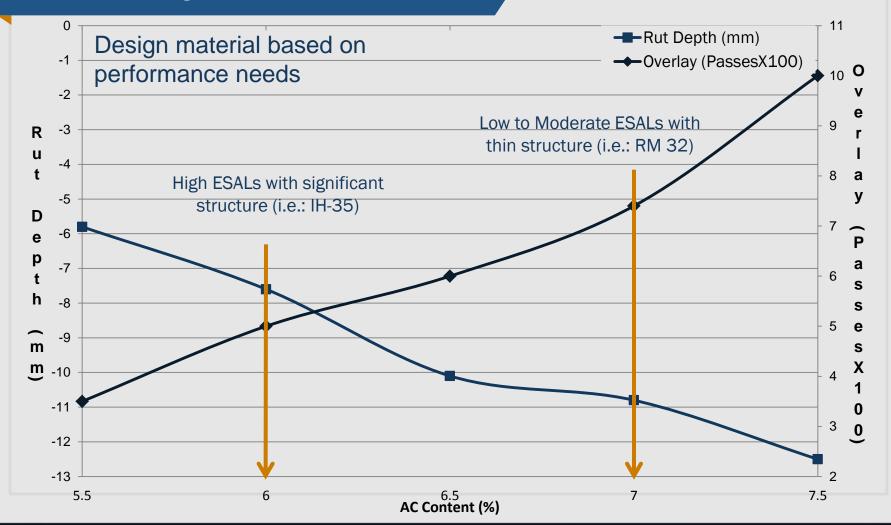
Master Gradation Limits (% Passing by Weight or Volume) and Volumetric Requirements

| Sieve Size | Coarse (TOM – C)                                     | Fine (TOM-F)       |  |  |  |  |  |
|------------|------------------------------------------------------|--------------------|--|--|--|--|--|
| 1/2 in.    | 100.0 <sup>1</sup>                                   | 100.0 <sup>1</sup> |  |  |  |  |  |
| 3/8 in.    | 95.0 – 100.0                                         | 98.0 - 100.0       |  |  |  |  |  |
| #4         | 40.0 - 60.0                                          | 70.0 – 95.0        |  |  |  |  |  |
| #8         | 17.0 – 27.0                                          | 40.0 - 65.0        |  |  |  |  |  |
| #16        | 5.0 – 27.0                                           | 20.0 - 45.0        |  |  |  |  |  |
| #30        | 5.0 – 27.0                                           | 10.0 – 35.0        |  |  |  |  |  |
| #50        | 5.0 – 27.0                                           | 10.0 – 20.0        |  |  |  |  |  |
| #200       | 5.0 – 9.0                                            | 2.0 – 12.0         |  |  |  |  |  |
|            | Asphalt Binder Content <sup>2</sup> , % Min          |                    |  |  |  |  |  |
| -          | 6.0                                                  | 6.5                |  |  |  |  |  |
|            | Design VMA <sup>3</sup> , % Min                      |                    |  |  |  |  |  |
| -          | 16.0                                                 | 16.5               |  |  |  |  |  |
|            | Production (Plant-Produced) VMA <sup>3</sup> , % Min |                    |  |  |  |  |  |
| -          | 15.5                                                 | 16.0               |  |  |  |  |  |

1. Defined as maximum sieve size. No tolerance allowed.

2. Unless otherwise shown on the plans or approved by the Engineer.

3. Voids in Mineral Aggregates (VMA).

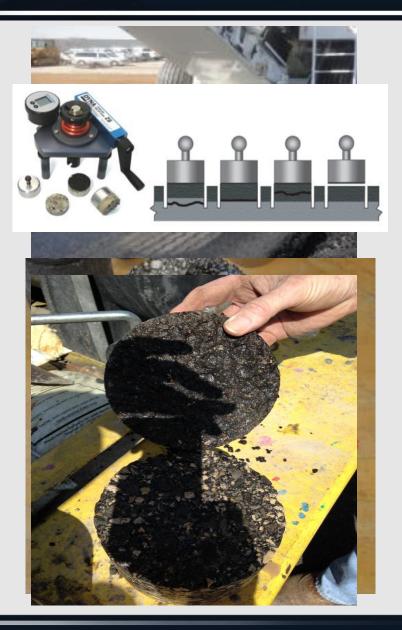

### Laboratory Mixture Design Properties

| Mixture Property                                                   | Test Method | Requirement       |
|--------------------------------------------------------------------|-------------|-------------------|
| Target laboratory-molded density, % (TGC)                          | Tex 207 F   | 97.5 <sup>1</sup> |
| Design gyrations (Ndesign for SGC)                                 | Tex-241-F   | 50 <sup>2</sup>   |
| Hamburg Wheel test, passes at 12.5 mm rut depth for PG 70 mixtures | Tex-242-F   | 15,000 Min        |
| Hamburg Wheel test, passes at 12.5 mm rut depth for PG 76 mixtures | Tex-242-F   | 20,000 Min        |
| Tensile strength (dry), psi.                                       | Tex-226-F   | 85-200            |
| Overlay test, number of cycles                                     | Tex-248-F   | 300 Min           |
| Drain-down, %                                                      | Tex-235-F   | 0.20 Max          |



### **Mix Design & Material Properties**

### Balance Mix Design – Performance – Based




1

- Preparation
  - Spot Repair: Isolated failures
  - Level-Up: Areas with greater than 120 in/mile
  - Milling: Recommend micromilling for smaller peak to valley

### **Keys to Successful Construction**

- BONDING IS CRITICAL
- Bonding/Sealing Courses
  - Non-tracking Tack Coats
  - Spray Paver Underseal Membranes
  - Seal Coat Underseals
  - New Non-tracking Hot-Applied Asphalt
- Performance-based bonding course specification



### **Keys to Successful Construction**

- Placement Temperature
  - 1" Thin overlay cools twice the rate of a 1.5" mat

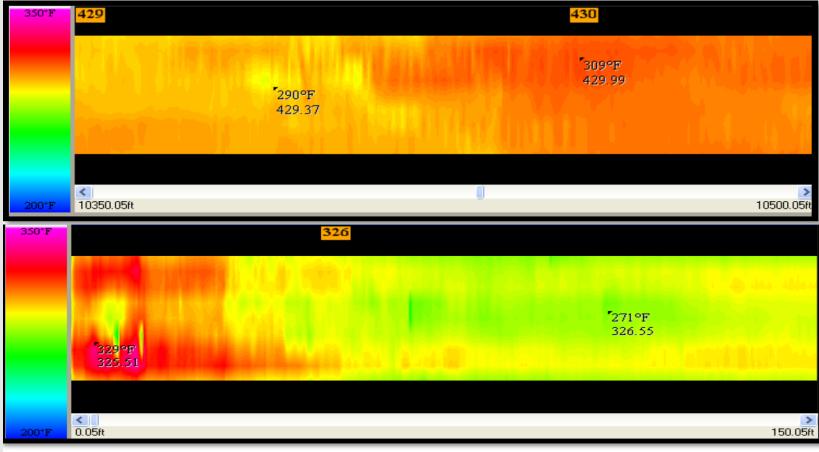



Figure 5. Severe Thermal Segregation in First Profile from CMHB-F.

## **Keys to Successful Construction**

- Placement Best Practices
  - Use a shuttle buggy to maintain temperature
  - Use insulated truck and trapped
  - Place when ambient temp. 70° F or greater
    - WMA required 60 70° F ambient temp. but produce greater than 300° F. Compaction aid.
    - WMA additive also required for haul distances ≥ 40 miles.
  - IR-bar highly recommended
  - Tandem dual rollers close to the paver
  - No pneumatics

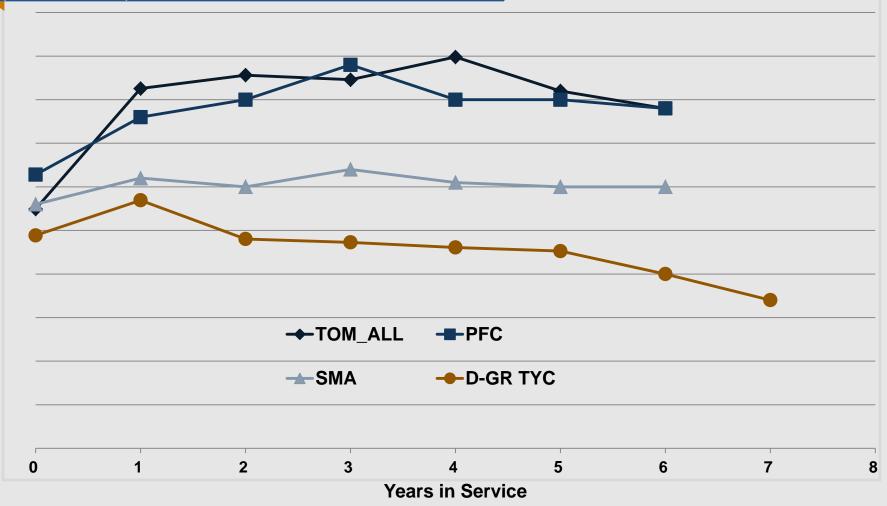




## Acceptance Testing

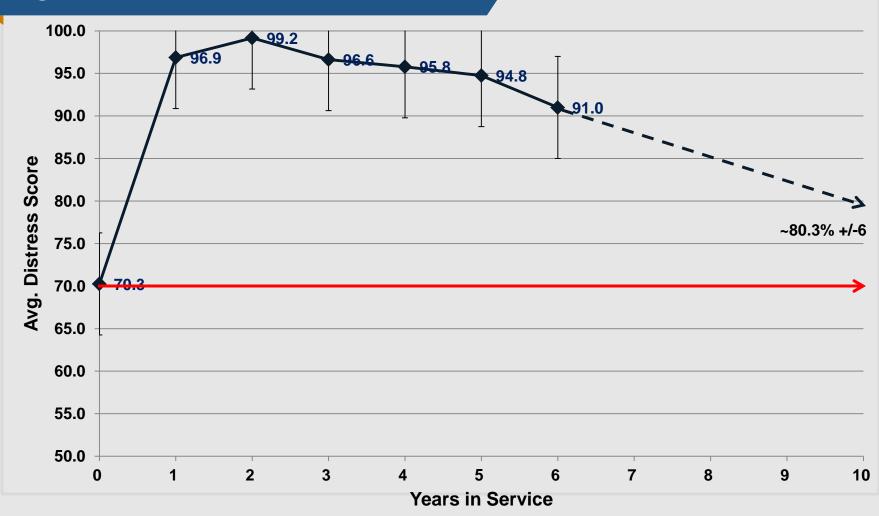
- Too thin to measure in-place air voids accurately
- Require TxDOT water flow test (Tex-246-F) to ensure adequate density and impermeability.
  - Water flow should be greater than 120 seconds.
- Thermal segregation profile or use of the Pave-IR is critical to identify segregation which may lead to low density, permeability, and water infiltration




- "How are they performing?"
- Objectives from PM Overlays
  - <u>Safety</u>: Restore surface friction and resistance to skid in wet weather
  - <u>Durability</u>: Eliminate and prevent long-term surface distress (rutting/cracking)
  - <u>User Satisfaction</u> improve ride quality and noise reduction
  - <u>Longevity</u>: Service life of 8 10 years with the least amount of routine maintenance as possible (crack seal, patching, strip seals, etc...)

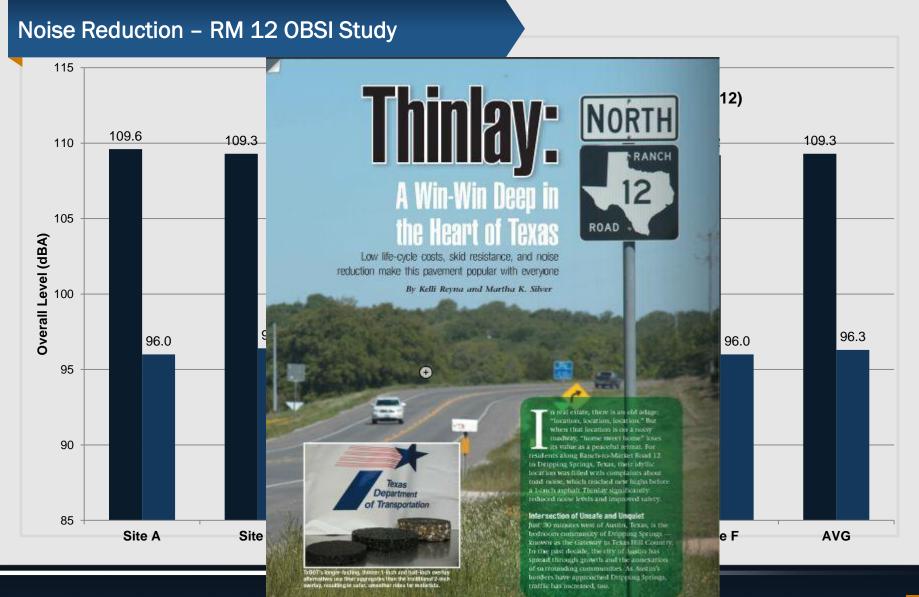
- Long-term Skid Resistance Performance
  - Open-graded surface = Good Macro-texture = Good Skid Resistance




### **Long-Term Performance - TOMs**

# Long-Term Skid Resistance Performance (2008-2014)



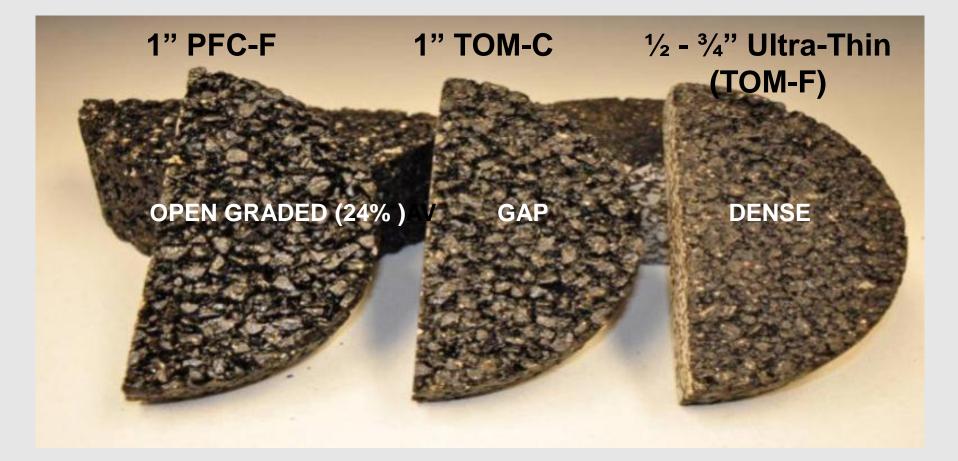

### **Long-Term Performance - TOMs**

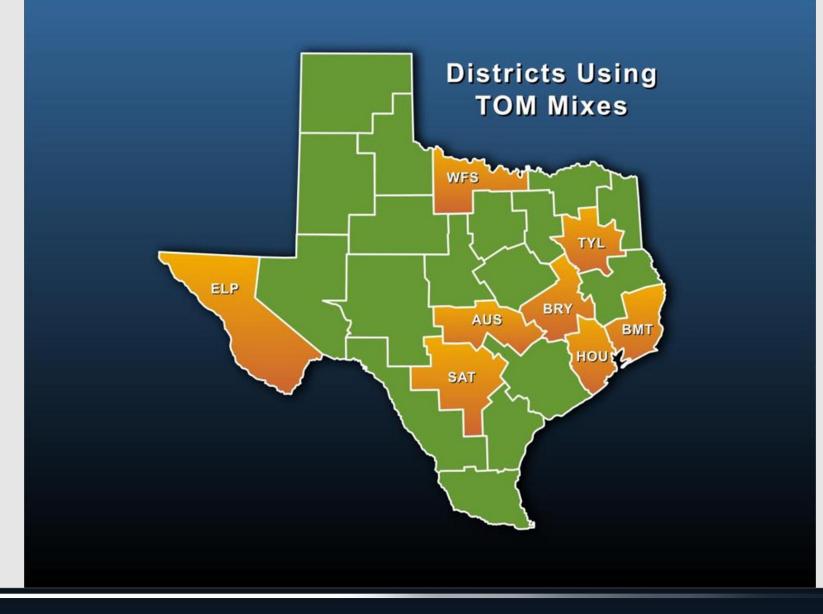
### Long-Term Distress Performance (2008-2014)

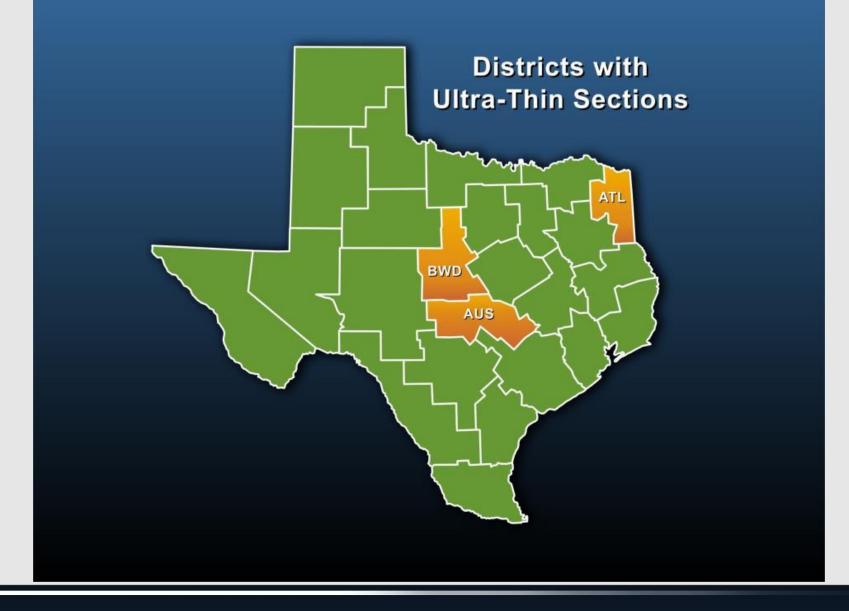


1

### **Long-Term Performance - TOMs**





- Objectives from PM Overlays:
  - <u>Safety</u>: High, sustainable surface friction over time
  - <u>Durability</u>: Distress scores over 90% over the last six years on average
  - User Satisfaction -
    - IRI improvement of at least 25% and up to 40% from preexisting IRI
    - Well documented noise reduction


- Objectives from PM Overlays
  - <u>Longevity</u>: On average, a service life of 8 10 years could be projected with minimal routine maintenance
  - Initial Cost (12 month avg. low bid unit price):
    - 1" TOM = \$6.80/SY
    - 1.5" D-GR TY D = \$6.74/SY
    - 2" D-GR TY C = \$7.92/SY
  - Austin District Cost Savings ~ \$17 million
  - Statewide Annual Cost Savings ~ \$9 million
  - Life Cycle Cost Analysis (LCCA) On-Going Analysis
    - Time to first crack seal for D-GR HMA with Recycled Asphalt = ~18-24 months
    - Time to first routine maintenance for TOM =  $\sim$ 4-5 years

- Issues
- High rate of oxidations of modified asphalts
  - REOBs/PPA
  - Over-stiffening leading to premature cracking and raveling
- Aggregate supply
  - Industry recalibrating crushing fractions
- Debonding issues
  - Non-tracking tack coats picking up during construction
  - Not allowing to set or spilling hot mix on the tack coat
- Use in wrong applications

New Thinlay Mixtures



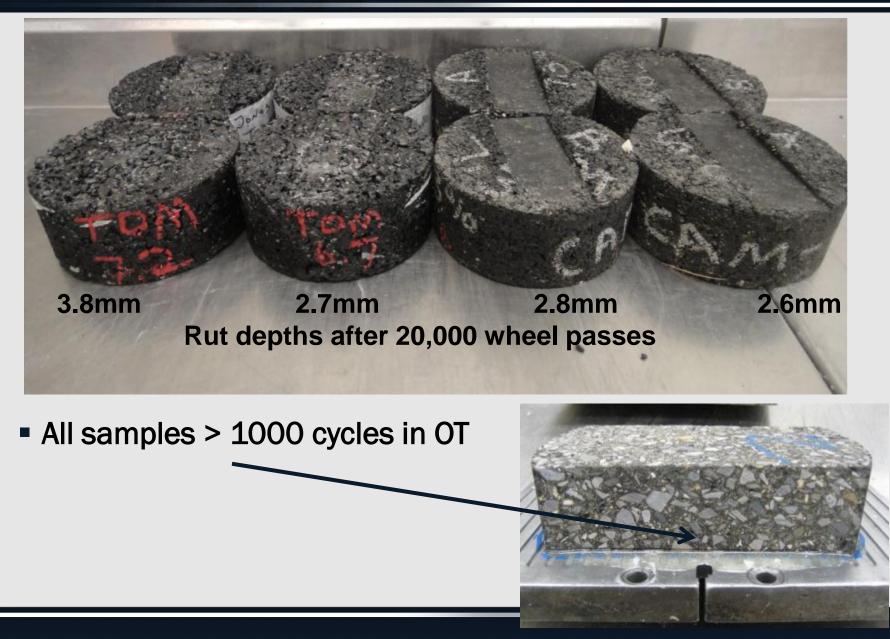




- Ultra-Thin Overlays (Item 347 TOM-F)
- 3⁄4" to 1⁄2" thickness
- When road is not a good candidate for seal coat
  - Good pavement condition
  - Lowest cost application
  - Turning movements
  - Improve skid resistance
  - Crack resistant level up layer



- 1/2 Ultra Thin (TOM-F) on Bleeding Seal Coats
- US 84 (Brownwood District) First UT mix let outside of Austin




- New Application: 1" PFC-F on Bleeding Seal Coats
- Loop 338 (Odessa District) wet weather accidents





- New Application: TOM/CAM on CRCP
- US 59/IH 69
- ADT = 375,000 vpd @ 10% Truck
- Major freeway for Downtown Houston



### US 59/ IH 69 (Houston District) – High Profile



## QUESTIONS

