

Sustainability & EPDs at Oregon DOT

Justin Moderie, P.E., G.E.

State Construction & Materials Engineer

Oregon House Bill 4139 (2022)

- Requires ODOT to set-up a "program for GHG reductions"
- ODOT to collect EPDs on asphalt, concrete and steel
- ODOT to devise strategies for reducing GHG emissions
- Allows for regional variability and prioritization of quality / performance

Additional Requirements

- Conduct Life Cycle Assessments (LCA)
- Report Annually to the Oregon Transportation Commission
- Setup a Grant Program to offset costs
- Work with Technical Advisory Committee (TAC) to setup program

Technical Advisory Committee

- Membership requirements listed in legislation:
 - DOT
 - DEQ
 - Construction Firms
 - Material Suppliers
 - Industry Associations of Workers in Construction or Manufacturing Industries
 - Environmental Organizations
 - Academia

• Committee (not incl. DOT & DEQ):

- OCAPA- CalPortland, CRH
- APAO
- AGC HP Civil
- NAMC GeoGrade Constructors
- ACEC Jacobs
- DEQ
- Cascade Steel Rolling Mill
- Local Iron Workers 29
- United Steelworkers District 12
- BlueGreen Alliance
- Good Company (Parametrix)
- Carbon Leadership Forum
- Oregon State University

EPD 101

- ISO Standards
- Product Category Rules (PCRs)
- Reports Environmental Impacts
 - Product label similar to food nutrition label
- May take up to 6 mo. staff time /up to \$10k for first plant (more for steel)

ENVIRONMENTAL IMPACTS	
Declared Product: Mix 3O1405260A • The Dalles Plant Description: ODOT CLASS 4000 Compressive strength: 4000 PSI at 28 days	5
Declared Unit: 1 m ³ of concrete (1 cyd)	
Global Warming Potential (kg CO2-eq)	406 (310)
Ozone Depletion Potential (kg CFC-11-eq)	8.31E-6 (6.35E-6)
Acidification Potential (kg SO2-eq)	1.86 (1.42)
Eutrophication Potential (kg N-eq)	0.46 (0.35)
Photochemical Ozone Creation Potential (kg O ₃ -eq)	47.0 (35.9)
Abiotic Depletion, non-fossil (kg Sb-eq)	7.21E-5 (5.51E-5)
Abiotic Depletion, fossil (MJ)	1,132 (865)
Total Waste Disposed (kg)	111 (85.1)

EPD 101

PRODUCT EPDS	Type to search					
Subcategory +	Plant or Plant Group + 1	Product mix 301405	Description 11	Compressive Strengt	≤ Reported GWP	Columns @28D × Reported~
Ready Mix	The Dalles	Mix 301405260A	ODOT CLASS 4000	4000 psi	310 kgCO2e	Details Open
Ready Mix	Hermiston	Mix 301405260A	ODOT CLASS 4000	4000 psi	264 kgCO2e	Details Open
Ready Mix	Boardman	Mix 301405260A	ODOT CLASS 4000	4000 psi	247 kgCO2e	Details Open
Ready Mix	The Dalles	Mix 301405260A	ODOT CLASS 4000	4000 psi	277 kgCO2e	Details Open
Ready Mix	Hood River	Mix 301405260A	ODOT CLASS 4000	4000 psi	318 kgCO2e	Details Open

Items ODOT considered

- EPD exemptions:
 - Conditions listed in House Bill
 - Small Contract Values
 - Small Material Quantities
- Availability of EPDs
- Existing ODOT policies:
 - Awarded Contract Value
 - Material Small Quantity Acceptance

Program Development Process

Ę

Existing Award Value Policies

- OJT/Apprentice Program (HB 2649, 2023)
 - Contracts \$3 Million
 - Requirement of Apprentice Hours

ARE YOU AN APPRENTICE IN THE HIGHWAY CONSTRUCTION TRADES?

ARE YOU APPLYING TO BE ONE?

FINANCIAL ASSISTANCE IS AVAILABLE TO HELP YOU BE SUCCESSFUL.

No career transition is easy, but we're here to make it a bit less stressful.

JOB READINESS SUPPLIES

SO YOU CAN HIT THE GROUND RUNNING!

- \$ for work tools
- \$ for work gear/boots
- \$ for rain gear

CHILD CARE SUPPORT

TO BUILD YOUR FAMILY AND CAREER!

- Assistance to pay for childcare while you work as an apprentice
- You choose your own qualified childcare provider

OTHER SUPPORTS

- Mentoring/coaching
- Information and referral
- Help getting to remote jobs
 Hardship assistance
- narusnip assistance

*Services provided through ODOT/BOLI

- carpenters (including pile drivers, scaffold erectors, etc.), cement masons, ironworkers, laborers, operating
- engineers, or painters. Note: We also provide services to construction apprentices in other trades if you are actively working on a road or

bridge project

DON'T WAIT! CONTACT:

Penny Painter (at Akana)* Tel: 503.205.4769 Email: penny.painter@akana.us http://bit.ly/apprenticesupports

Other Programs Contract Value

- Colorado DOT
 - Materials
 - Asphalt and Asphalt Mixtures;
 - Cement and Concrete Mixtures;
 - Steel
 - Engineers Estimate \geq \$3M

- California DOT
 - Materials
 - Carbon Steel Rebar
 - Structural Steel
 - Total bid over \$1M and 175 or more original working days

Existing Small Quantity

• ODOT Manual of Field Test Procedures (MFTP)

MANUAL OF FIELD TEST PROCEDURES

Ę

ODOT Quality Assurance Program

Small Quantity Table

Section	Type of Material	Approximate Quantity
00330	Earthwork (Embankment)	500 yd ³
00330	Earthwork (Excavation)	500 yd ²
00390	RipRap	100 yd ³
00405	Ditch & Trench Excavation, Bedding and Backfill	50 yd ³
	Commercial Grade Concrete	
00440	(Non-Structural Items)	50 yd ³
00495	Trench Resurfacing	500 Ton
00510	Structure Excavation and Backfill	500 Ton
0A596, 0B596 &		
0C596	Retaining Walls	500 Ton
00641	Aggregate Sub-base, Base & Shoulders	2000 Ton
00680	Stockpiled Aggregate	2000 yd ³
00730	Asphalt Tack Coat	50 Ton
	Emulsified Asphalt Concrete Pavement	
00735	(includes asphalt cement)	2500 Ton
	Asphalt Concrete Pavement (Statistical Acceptance)	
00745	(ACP-each Level) (includes asphalt cement).	2500 Ton

Challenges with EPDs

- Only reports a product's cradle-togate
 - May inadvertently promote materials with a higher cradle-to-grave GHG
 - Data Quality
- No recognized method to perform Quality Assurance
- Lack of harmonization amongst PCRs

11000		Produ	ct	Construction		Use				End-of-life				Beyond	
Stage	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	C3	C4	D
Embodied	Raw material supply	Transport	Manufacturing	Transport	Construction and installation	Use	Maintenance	Repair	Replacement	Refurbishment	Demolition and deconstruction	Transport	Waste processing	Disposal	Credit for Reuse, Recycling and Recovery Potential
Occurtional				B6	Energy use										

Goals for Program

- Robust collection of EPDs
- Conduct LCAs
- Develop program level GHG reducing strategies

ODOT's Existing Carbon Reduction Strategies

- Recycled asphalt pavement in asphalt pavement mix designs.
- Low-carbon supplementary cementitious materials in cement concrete mixes.
- Type IL cements (also known as Portland Limestone Cement) are a low-carbon alternative permitted.

- ODOT designs roads to optimize the lifecycle; this means pavement durability is prioritized, which reduces the need for more frequent maintenance.
- Incentives to pave smoother roads to increase vehicle efficiency and reduce GHG emissions from users.

LCA, LCCA, and Sustainability

Advanced numerical modeling

Performance based specs

Technology development

OSU ASPHALT MATERIALS AND PAVEMENTS RESEARCH PROGRAM Erdem Coleri, Ph.D. Associate Professor

reaon

of Transportation

School of Civil and Construction Engineering, Oregon State University http://research.engr.oregonstate.edu/coleri/

Potential Impact on ODOT GHG Emissions

Scope 1: Direct GHGs from equipment and facilities owned or operated by ODOT.

Scope 2: Indirect GHGs from electricity purchased for equipment and facilities owned or operated by ODOT.

Scope 3: All other indirect emissions sources that result from ODOT's activities but occur from sources owned or controlled by ODOT Tier 1 contractors and other downstream supply chain vendors (e.g., asphalt and concrete plants and concrete and cement manufacturers).

Federal NCHRP Project 720

• During their field trials to get their information, they used five different vehicle types with installed fuel meters.

(a) Medium Car

(b) SUV

(d) Light Truck

(e) Articulated Truck

ODOT has the following vehicle types available in the PMS:

- Medium Car
- SUV
- Articulated Trucks

How do they measure the IRI?

- Dynamic measurements of the road profile are collected with instruments mounted on vehicles (inertial profilers).
- Lasers installed on the vehicle measure the height of the vehicle relative to the road. These laser measurements were then converted to a surface profile.

Example of Inertial Profiling Systems (SSI)

IRI and Rolling Resistance

- Several models have been developed to predict the behavior of vehicles when traveling on bumpy surfaces
- Quarter car model is the one used to convert laser measured surface profile to IRI
- IRI is: the vertical movement of your axle (in inches) when you travel a fixed distance (in miles)

Yang et al. (2022)

CO2 Emission Outputs for the Analysis Conducted for the Past 20 Years – What If Scenarios

How much CO2 emission savings could have been created if the average IRI for the ODOT roadway network were 40in/mile and 65in/mile for the past 20 years?

Our baseline is ODOT's actual roughness values in the PMS.

CO2 Emission Outputs for the Analysis Conducted for the Future 10 Years – What If Scenarios

Our baseline is "do nothing" to improve the roughness next 10 years.

What would be the CO2 savings if we can keep the roadway network at Xin/mile IRI level next 10 years?

CO2 Emission Outputs for the Analysis Conducted for the Future 10 Years – What If Scenarios

Our baseline is "do nothing" to improve the roughness next 10 years. What would be the CO2 savings if we pave 5.6% of the highest traffic roadway network to reach Xin/mile IRI annually?

CO2 Emission Outputs for the Analysis Conducted for the Future 10 Years – What If Scenarios

Our baseline is "do nothing" to improve the roughness next 10 years. REDUCING EMISSIONS IS GREAT!!! HOW ABOUT THE SAVINGS FOR THE TAX PAYERS?

Kevin Shearmire, PE

ODOT Sustainability Engineer

Kevin.J.Shearmire@odot.oregon.gov

Zechariah Heck

ODOT Climate Office

Zechariah.Heck@odot.oregon.gov